Adversarial Attacks on Deep-Learning Based Radio Signal Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Deep Reinforcement Learning with Adversarial Attacks

This paper proposes adversarial attacks for Reinforcement Learning (RL) and then improves the robustness of Deep Reinforcement Learning algorithms (DRL) to parameter uncertainties with the help of these attacks. We show that even a naively engineered attack successfully degrades the performance of DRL algorithm. We further improve the attack using gradient information of an engineered loss func...

متن کامل

Delving into adversarial attacks on deep policies

Adversarial examples have been shown to exist for a variety of deep learning architectures. Deep reinforcement learning has shown promising results on training agent policies directly on raw inputs such as image pixels. In this paper we present a novel study into adversarial attacks on deep reinforcement learning polices. We compare the effectiveness of the attacks using adversarial examples vs...

متن کامل

Towards Deep Learning Models Resistant to Adversarial Attacks

Recent work has demonstrated that neural networks are vulnerable to adversarial examples, i.e., inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides a broad and unifying view on much of the prior work...

متن کامل

Adversarial Examples: Attacks and Defenses for Deep Learning

With rapid progress and great successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial examples are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The ...

متن کامل

Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks

Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Wireless Communications Letters

سال: 2019

ISSN: 2162-2337,2162-2345

DOI: 10.1109/lwc.2018.2867459